Step of Proof: do-apply-p-restrict
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
do-apply-p-restrict
:
A
,
B
:Type,
f
:(
A
(
B
+ Top)),
P
:(
A
),
p
:(
x
:
A
. Dec(
P
(
x
))),
x
:
A
.
(
can-apply(p-restrict(
f
;
p
);
x
))
(do-apply(p-restrict(
f
;
p
);
x
) = do-apply(
f
;
x
))
latex
by ((((Unfold `p-restrict` 0)
CollapseTHEN (((Auto
)
CollapseTHEN (((((RWO "do-apply-compose" 0)
THEN (Auto
))
)
CollapseTHEN (((((RWO "can-apply-compose-iff" (-1))
THEN (Auto
))
)
TH
CollapseTHEN (((RWO "do-apply-p-filter" 0)
THEN (Auto
))
))
))
))
))
)
CollapseTHEN (((
Co
All (RWO "do-apply-p-filter"))
CollapseTHEN (Auto
))
))
latex
Co
.
Definitions
p-restrict(
f
;
p
)
,
Dec(
P
)
,
s
=
t
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
b
,
,
,
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
p-filter(
f
)
,
Type
,
left
+
right
,
Top
,
T
,
True
,
t
T
,
x
(
s
)
,
f
(
a
)
,
x
.
t
(
x
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
x
:
A
B
(
x
)
Lemmas
do-apply-compose
,
can-apply-compose-iff
,
do-apply
wf
,
assert
wf
,
can-apply
wf
,
do-apply-p-filter
origin